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Numerical simulation of turbulent flows (DNS or LES) requires numerical methods
that are both stable and free of numerical dissipation. One way to achieve this is to
enforce additional constraints, such as discrete conservation of mass, momentum,
and kinetic energy. The objective of this work is to generalize the high order schemes
of Morinishi et al. to non-uniform meshes while maintaining conservation properties
of the schemes as much as possible. This generalization is achieved by preserving
symmetries of the uniform mesh case. The proposed schemes do not simultaneously
conserve mass, momentum, and kinetic energy. However, depending on the form
of the convective term, conservation of either momentum or energy in addition to
mass can be achieved. It is shown that the conservation properties of the generalized
schemes are as good as those of the standard second order finite difference scheme on
non-uniform meshes, while the accuracy of the new schemes is definitely superior.
The predicted conservation properties are demonstrated numerically in inviscid flow
simulations. © 2000 Academic Press

Key WordsDNS; LES; numerical method; non-uniform mesh; conservation prop-
erties.

1. INTRODUCTION

Numerical simulation of turbulent flows (DNS or LES) requires numerical methods the
can accurately represent a wide range of spatial scales. One way to achieve a desirec
curacy is to use high order finite difference schemes. However, additional constraints st
as discrete conservation of mass, momentum, and kinetic energy should be enforce
one wants to ensure that unsteady flow simulations are both stable and free of numer
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dissipation. In addition, both pressure and velocity fields must be physical. These requ
ments are usually achieved by using a staggered grid and enforcing continuity.

Until recently the standard second order accurate staggered grid finite difference sche
of Harlow and Welch [1] was the only scheme that simultaneously conserved mass, n
mentum, and kinetic energy. It was observed by Ghosal [2] that the accuracy of a sect
order finite difference scheme is low and fine meshes are required to achieve accept
results. For that reason Morinisht al. [3] derive the general family of fully conserva-
tive higher order accurate finite difference schemes for uniform staggered grids. Both
scheme of Harlow and Welch [1] and that of Morinigdti al. [3] conserve mass, mo-
mentum, and kinetic energy on a uniform mesh. However, generalizing these scheme
non-uniform meshes and preserving the conservation properties is not straightforward.
example, the generalization of the fourth order accurate finite difference scheme, sugge
in [3], does not even conserve momentum. Furthermore, Morieishl. [3] mistakenly
concluded that in order to construct conservative schemes, one should choose betv
accuracy and conservation. One of the reasons why the authors came to this conclu
may be the fact that they tried to generalize the scheme by changing the weights in
difference operators as a function of local grid spacings and preserving the order of
cal truncation error. As a consequence of this generalization, the resulting scheme ¢
not preserve symmetries of the uniform mesh case. Verstappen and Veldman [4], in tt
analysis of the linear convective-diffusion equation on non-uniform meshes, showed tl
in order for the scheme to be conservative, it should preserve symmetries of the unde
ing operator, i.e., the convective derivative should be approximated by a skew-symme
operator.

Another attempt to construct higher order conservative scheme was recently unc
taken by Verstappen and Veldman [4, 5]. The fourth-order accuracy was achieved by
ing Richardson extrapolation of symmetry preserving generalization of the second-or
scheme of Harlow and Welch [1]. It should be noted that the scheme of Verstappen &
Veldman, when applied to uniform meshes, is different from the fourth order fully conse
vative schemes developed in [3] and, as shown in [3], does not conserve momentum. |
major strength of the scheme proposed in [4, 5] is that it is computationally efficient ai
conserves both mass and energy on non-uniform meshes.

The objective of this work is to generalize the high order schemes of Moriatshli
[3] to non-uniform meshes by preserving the symmetries of the uniform mesh case anc
study the conservation properties of the proposed shemes.

The paper is organized as follows. Conservation properties of the mass, momentt
and kinetic energy equations for incompressible flow are reviewed in Section 2. Discre
operators, used in this paper, are defined in Section 3. The generalization of the h
order schemes of Morinishat al. [3] to non-uniform meshes is presented in Section 4.
The conservation properties of the proposed schemes are discussed there as well. Fir
numerical tests of the conservation properties are performed in Section 5.

2. ANALYTICAL REQUIREMENTS

In this section, we briefly outline the analytical requirements for conservation of mas
momentum, and energy for incompressible flow. For further details we refer the reac
to [3].
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The continuity and momentum equations describing the motion of incompressible flc
are written symbolically as

(Cont) = 0, (1a)
% + (Conwv); + (Pres); + (Visc); =0, (1b)
where
_ou _p L}
(Cont) = 2=, (Pres) = . (Misc); = 9% )

andu; is the velocity vectorp is the pressure divided by density, ands the viscous stress.
Henceforth,p will be referred to as pressur@onv); is a generic form of the convective
term and will be defined below.
Conservation properties of Egs. (1a)—(1b) will now be established. Note that Egs. (1z
(1b) are written in the form
d¢

St Q+Q+7Q+-- =0 ©)

Integrating Eqg. (3) over the volume we obtain

o rose-e

We say that the terfiQ conserves if the following relation holds in a periodic field:

[ amv-s

Following this definition of conservation, it is easy to show that Eq. (4) is satisfied autc
matically if ¥Q is written in divergence (conservative) form
k
o(Fi)
k i
= —, 5

Q o ®)
Note that mass is conservadoriori since the continuity appears in divergence form. For
the same reason the press(Pees); and viscougVisc); terms conserve momentum. The
convective term is also conservatigepriori if it is written in divergence form, which is
not always the case. There are four commonly used forms of the convective term. Th
forms are referred to adivergenceadvective skew-symmetrjandrotational forms and
are defined as

ou; U
Div.) = ——, 6
(Div.); ox; (6a)
ou;
(Adv); = u ﬁ (6b)

1oujy 1 9y

Skew); = —uj—, 6
( eW)I 2 3Xj 2uJ 3Xj ( C)
ou; 3Uj laujuj
Rot)i =u;| — — — = . 6d
(Rot); Ui (3Xj 9%; ) + 2 00X ( )



HIGH ORDER FINITE DIFFERENCE SCHEMES 749

The four forms are connected with each other through the following analytical relations

(Adv))j = (Div.)j — u; - (Cont), (7a)
(Skew); = %(Div.)i + %(Adv.)i, (7b)
(Rot); = (Adv);, (7¢)

where(Cont) = du; /ax;. Note that the advective, skew-symmetric, and rotational forms
are conservative as long as the continuity equation is satisfied.

The transport equation of the square of a velocity component, for instafy@& can be
written as

duz/2
at

+ Uy - (Conv)1 + uq - (Pres); +uq - (Visc); =0, (8)

where(Conv); is a generic form of the convective term, afiRfes); and (Visc); are the
pressure and viscous terms, respectively. The convective term in Eq. (8) can be written
each of the forms as

. ujuz/2 1
Uz - (Div.); = éle + Euf - (Cont), (9a)
ujuz/2 1
Uy - (Adv.); = éé— —§u§{ComL (9b)
u;u?/2
Uq - (SkEVV)l = Ui ul/ (QC)
3Xj

Note that the skew-symmetric form is conservatiyeriori in the velocity square equation.
Since the rotational form is equivalent to the advective form, the four convective forms &
energy conservative if the continuity equation is satisfied.

The transport equation of the kinetic enerffy= u;u; /2, can be written as

aa—lt( + u; - (Conv); + uj - (Pres)i + u; - (Visc); = 0. (10)

The conservation property of the convective term can be determined in the same manne
for u?/2. The terms involving pressure and viscous stress in Eq. (10) can be written as

ApU;

ui - (Pres); = Y p- (Cont), (11a)
i
a7 Uj ou;
Ui - (ViSC)i = al)](j - Tij ﬁ (11b)

The pressure term conserves kinetic energy if the continuity equation is satisfied. The visc
term is not conservative because the second term on the right-hand side of Eq. (11b) is
kinetic energy dissipation. Table | provides a summary of the conservation properties of
convective, pressure, and viscous terms in the transport equations €32, andK for
incompressible flow.

Morinishi et al. [3] derived a class of high order schemes for a uniform staggered gri
which satisfy the conservation properties in a discrete sense. The objective of this worl
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TABLE |
Conservation Properties of the Convective, Pressure, and Viscous Terms
in the Momentum and Transport Equations

Transport equations

Terms in momentum eq. U u?/2 K
(Div.) o O O
(Adv) = (Rot) O O O
(Skew O 0] ©)
(Pres) o) X O
(Visc) o) X X

Notation.®, conservative priori; O, conservative ifCont) = 0; x, not conservative.

to generalize the higher order schemes of Moringlal. [3] to non-uniform meshes while
preserving discrete conservation as much as possible.

3. DISCRETE OPERATORS

In order to simplify the analysis, we limit our consideration to the rectangular algebra
non-uniform meshes with non-uniform grid spacing in each of the direckgns, andxs.
By algebraic grid we imply that the computational grid in physical domain is obtained b
mapping a uniform computational grid in the computational domain to physical domain. L
D =[ay, by] x [az, by] x [ag, bs] and 2 =[w1, B1] x [a2, B2] x [a3, B3] be respectively the
physical and computational domainss (X1, X2, X3)"T and€ = (&1, &, £3)" be coordinates
in physical and computational domairgs=f(x) be a nonlinear map of physical domain
D into computational domain, all;, A, Az be uniform grid spacings in the respective
directions in computational domafa. In this paper we limit our consideration to the case
where the mapping =f(x) can be written in the form

& = fi(x), i=1...,3 (12)

In other words, we consider only uni-directional mappings, and the computational grid
physical space can be constructed as a tensor product of one-dimensional computati
grids.

Let us briefly describe the staggered grid arrangement. An example of a uniform stz
gered grid is shown in Fig. 1. In the case of uniform grid spacings, the choice for locatic
of velocity and pressure points is natural: the velocity compongnfis= 1, 2, 3) are dis-
tributed around the pressure points. The continuity equation is centered at the pressure p«
while the momentum equations corresponding to each velocity component are centere
the respective velocity points. In the case of a non-uniform staggered grid, the locations
pressure and velocity points are ambiguous: these points can be determined as geome
volume and edge centers either in physical or computational spaces. Moghesh[3]
followed the first approach. However, the generalization to non-uniform meshes sugges
in [3] preserves the conservation properties only in the case of the second order sche
The reason is that for the higher order schemes (4th order and higher) the resulting disc
operators do not preserve symmetries of the uniform mesh case. Verstappen and Veld
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FIG. 1. Staggered grid arrangement.

[4] and Veldman and Rinzema [6] showed that in order for the scheme to be conservati
it should preserve symmetries of the underlying operator. The basic idea behind Veldn
and Verstappen’s generalization is that the differentiation operation is performed in co
putational space. The derivative in physical space is calculated using the local Jacob
which can be found numerically using the same stencil and the same order accuracy as f
differencing operator in the computational space. To illustrate this idea let us consider
one-dimensional case. First, we approximate the derivative in computational space

8 _din—dia
s 2A
whereA is the uniform grid spacing. The derivative in physical space is found as
) 16
2 _ 126 13
8x  J o8&
whereJ is the Jacobian of the transformatigr- &, which can be found numerically by
substitutingx for ¢

X Xig1— Xi—1

J=— =
S& 2A

This seemingly simple idea is the key which enables us to generalize the high order sche|
of Morinishi et al. [3] to non-uniform meshes.

Let the finite difference operator in computational domain with stenadting ong with
respect t&; be defined as

¢ _ P51+ NA1/2, 8, 83) — ¢(51 —NA1/2, 53, 83)

= 14
3né1 NA; (14)

The interpolation operator with stendilacting ong in the&; direction is given by
= $(E1+NA1/2,8,83) + p(51 —NA1/2, &, §3). (15)

2
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In addition, we define a special interpolation operator with stenaflthe product ot and
¥ in the&; direction,

ﬂfl 1

QU = ZP(E1+NA1/2, &, E)Y(EL—NAL/2, &, £3)

2
1
+ él/f(él +NA1/2, &, E3)p(§1 — NAL/2, &, &3). (16)

Discrete operators in thg and&; directions are defined in the same way as for ghe
direction.
The following identities will be needed to derive some relations later in the paper:

Snpy" Sonr Sonth

- , 17
st Pomt; TV 5, (172)
@v) P =gy (17b)
“hE T 17n j 1 — Ngj
S = B 4+ g 7o)
e
5n¢’ _ 82n¢ , (17d)
5n$j 82n%—j
Mg <~ Méi
8™ _ b (176)
(Sn%—j Sn‘fj
T A A S e N
e _ , 17f
w5n§j 5n$j ¢5n§j ( )
_ /\nsj
VR LTI B WV A R
= — —+ = . 17
Ok 5 5E s (17g)

Note thatt; appearing as a superscript does not follow the summation convention.
For notational convenience let us introduce the discrete finite difference operator in t
physical domain,
L

=——, (18a)
X J dnéi

where J; is the local Jacobian of the transformatign— &. Note that the subscript
appearing inJ; in Eq. (18a) and all subsequent equations does not follow the summatic
convention. We emphasize that it is the form of Eq. (18a) which allows the construction
higher order schemes on non-uniform meshes with good conservation properties.

The averaging operators (15) and (16) use only functional values at grid points and
not use any information about grid spacing. Consequently, these operations are the san
physical and computational spaces:

o™ =™, (18b)
o =gy (18¢)

We now define two concepts of discrete conservation. We say that discretized equat
(3) locally conservesp if all the discretized term$Q can be written in the conservative
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form,

k=" 1/ 19
Q=2 5 (19)

This definition corresponds to the analytical divergence form of Eq. (5).
We say that discretized equation (3)gkobally conservative if the following relation
holds in a periodic field,

DY) “Q@)Aavx =0, (20)

X1 X2 X3

whereAV (x) = JAV(¢), J= Hﬁzl Jk is the Jacobian of the transformatign> £, and

AV (€)= Hﬁzl Ak is a constant volume in the computational domain. Note that in the pe
riodic case local conservation (19) implies global conservation. Also note that the definiti
(20) is a discrete analogue of Eq. (4).

4. FINITE DIFFERENCE SCHEMES

4.1. Continuity and pressure termsWe define the discrete continuity and pressure
terms as

S1U;

(Cont.— NQ) = S =0, (21)
31p

Pres.— N&); = — 22

(Pres D), S (22)

where theNS2 denotes the second order accurate finite difference scheme on a non-unifc
staggered grid. Analogously, fourth order approximations are

951U 143U
Cont.— N&) = - ——— =0, 23
( ) 8 51X 8 83X ( )
941p 1ésp
Pres.— N&%); = - - = . 24
( )i 861X 8 83X ( )

Note that discrete continuity equatig@ont.— NSp is centered at the cell center (pressure)
point, while pressuréPres.— NSn; and convectivéConv. — NSr); terms are evaluated at
the respective velocity points.

Local kinetic energy is an ambiguous quantity in a staggered grid arrangement sir
the individual velocity components are defined at different locations in space. Some s
of interpolation must be used in order to obtain the kinetic energy at the same point. C
possible interpolation for the pressure terms in the energy equation is

1,57 _ o™
J i 81X

— p- (Cont.— N), (25)

— ol 3 51X 3%
91 é&p 11 43p 951U p 183U pe
ST LA _= — p-(Cont.— NS#). (26
835 T 83Vse T8 a8 e PO ). (29)
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TABLE 1l
Conservation Properties of Finite Difference Schemes for
the Pressure Term on a Non-uniform Staggered Grid

Transport equations

FD schemes for momentum eq. U K
(Pres.— N2 © O2
(Pres.— NH4) o} Oa

Notation.®, conservativa priori; 0., conservative ifCont—N) = 0;
Oa, conservative ifCont.— N$4) =0.

Therefore, pressure terms (22) and (24) conserve energy if the corresponding disc
continuity equations are satisfied. Conservation properties of the discrete pressure tern
a non-uniform staggered grid are summarized in Table II.

4.2. Second order accurate convective schemAs.we have already mentioned, local
kinetic energyK = u; u; /2 cannot be defined uniquely on a staggered grid. Atermis (locally
conservative in the transport equation Kfif the term is (locally) conservative in the
transport equations aff/2, u3/2, andu/2. Since the conservation propertiesi$f2 and
u2/2 are estimated in the same manner asifg®, only the conservation properties of the
convective schemes in the momentum aA¢2 equations need to be considered.

The rotational form for a fourth and higher order convective scheme which conserv
both momentum and kinetic energy on uniform mesh is not known. Therefore we limit ot
consideration to divergence, advective, and skew-symmetric forms. Let us define sec
order accurate convective schemes for non-uniform staggered grids as

S 1% - 1X
(Div. — NS); = U @7)
51Xj
—_— 1
1 S0, !
(Adv.— N); = — oy 20 (28)
J; 81§
1 . 1
(Skew— N); = 5(D|v. — N, + é(Adv.— NS);. (29)

Using the identities (17e), (17f), (18a), and (18b) we find that the adve@ihe — N);
and divergencéDiv. — N); forms of the convective term are connected via

) 81u_j1Xi
(Adv.— NR); = (Div. — N&); — uj S (30)

J

Using (17e), Eq. (30) can be further simplified as
—1X; .
Su § 71X

(Adv.— NS2); = (Div. — N®); — u; - (Cont— N9)™ +u; - 51—“' e G

1% 51X|

where there is no summation oveNote that the term in square brackets is the commutatior
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error between the finite difference (18a) and averaging (18b) operators and in general is
zero, unless the grid is uniform in thxg direction.

Equations (27) and (31) are the discrete analogs of Egs. (6a) and (7a), respectively. Cle:
Egs. (6a) and (27) have the same structure while Eq. (31) has an additional term in it wi
compared to Eq. (7a). For that reason the discrete conservation properties for both adve
and skew-symmetric forms of the convective term are different from analytical ones. In ott
words, the divergencéiv. — N&); form of the convective term is conservatigepriori
in the momentum equation while enforcing the discrete continuity equation is not enou
to make advectivéAdv.— N2); and skew-symmetricSkew— N); forms conserve the
momentum. This is due to the presence of a commutation error term which, in general
non-zero for non-uniform meshes.

Using the identities (17f), (17g), and (18a)—(18c) we find that the product between
and(Skew— N2); can be rewritten as

X7 X

Uy - (Skew— NS2; = %MJB% (32)
Therefore (Skew— N); is conservative priori in the transport equation of /2. Note
that in the case of the non-uniform staggered grid, the commutation error term is non-z
and neither divergena®iv. — N2); nor advectivg Adv. — N?); forms of the convective
term conserve kinetic energy. We also note that in the case of a uniform mesh, the cc
mutation error is zero, and we fully recover the conservation properties described in [
Conservation properties of the second order accurate convective schemes on a non-uni
staggered grid are summarized in Table Ill. Note that the same kind of analysis for t
standard generalization to a non-uniform grid of the second order scheme of Harlow &
Welch [1] would lead to similar conclusions.

4.3. Higher order accurate convective schemds.this section we will generalize the
higher order accurate convective schemes of Morirgslail. [3] for non-uniform meshes.
The fourth order accurate convective schemes on a non-uniform staggered grid are define

. 96 (/9 4 1 o\ o4
Div. — NS4 = - — < —u™ — Zup® | o™i
( i 851Xj{(8J G ) ' }

! 9 1 1 s 3X;
_— — . N N i N 33
8 83X; {(8“’ g ) (33)

TABLE 11l
Conservation Properties of Second Order Accurate Convective
Schemes on a Non-uniform Staggered Grid

Transport equations

FD schemes for momentum eq. U uz/2 K
(Div. — N&) © ®2 ®2
(Adv.— N2) ®2 ®2 ®2
(Skew— N) ®2 o O]

Notation.(®, conservativea priori; ®,, not conservative on a non-uniform
grid and conservative on a uniform grid(ifont.— N2) =0.
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1
91 /9 1 81U
(Adv.— NS, = 37 (811_115i - u_35i> i
j

8 8 )8iE
3
1179 o0 150 8su;
_ | IS - IS | 2 , 34
83 (BUJ 8 )5, (34
1 1
(Skew— NS¥); = 5(D|v. — NSbH); + é(Adv.— NSb); . (35)

Using the identities (17e), (17f), (18a), and (18b) we find that the adveétohe— NS4,
and divergencéDiv. — NS1); forms of the convective term are connected via

. 9 1 ,
(Adv.— NS#); = (Div. — NS#); — u; - (§(Cont.— NSH — 5 (Cont.— NS4)3X'>
+ 9u- o [ ™ sy 1|83y > 83U X
8 ! 8 | §1% 61X 8 | 83%; 63X

L (Ofmu™ s ] 1 s sw]) o
8I 8 | 81% 61X 8 83X 83X ’

where there is no summation oveNote that in the case of non-periodic boundary condi-
tions the special care should be taken near the wall. This can be achieved either by decree
the order of the scheme near the wall or by introdughgst pointsas it is done in Morinishi
etal [3].

Fourth order convective schemes exhibit the same pattern as second order schel
only the divergence forniDiv. — N$4); of the convective term is conservatigepriori in
the momentum equation. The presence of a commutation error in both adv@ative-
NS4); and skew-symmetri¢Skew— NS4); forms of the convective term results in non-
conservation of momentum on a non-uniform mesh.

The conservation properties faz/2 can be derived exactly the same way as in
the previous section. Using the identities (17f), (17g), and (18a)—(18c) we obtain tl
relation

9 s 9 1 U
Uy - (Skew— NSt); = 851;{<8u_j“1 - 8u_j3“) . }
]

143 g—lx 1—3x ul/Ulsxj
——— | Ut = U ) —— . 37
8 83| {(8 . 8’ 2 37)

Thus,(Skew— NS%); is conservative priori in the transport equation @f/2 while both
the divergencéDiv. — NS4); and advectivé Adv.— NS4); forms of the convective term do
not conserve kinetic energy when the staggered grid is non-uniform. In Table IV we sur
marize the conservation properties of the fourth order accurate convective schemes ¢
non-uniform staggered grid. They are identical to the properties of the second order sche
of Harlow and Welch [1].

Higher order finite difference schemes on non-uniform meshes can be constructed in
same way as for the fourth order schemes. fitheorder accurate convective schemes on a
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TABLE IV
Conservation Properties of Fourth Order Accurate Convective
Schemes on a Non-uniform Staggered Grid

Transport equations

FD schemes for momentum eq. uj uz/2 K
(Div. — NS4 o ®4 ®q
(Adv.— NSA) ®4 ®4 ®a4
(Skew— NSH) ®a O] ©]

Notation.®, conservativa priori; ®,4, not conservative on a non-uniform
grid and conservative on a uniform grid(ont.— NS4) =

non-uniform staggered grid are defined as

n/2 s n/2
(Div. — NSp); = Zakg(zﬂ Z“' U @b | @y | (38)
o 2@-nX) (1
n/2 n/2 5 (k=D)E;
k—1) Ui
(Adv.— NS, = oy @-Da | S&DT : 39
' Z lz: Sk-1§j (39)

where thewy are the interpolation weights. The continuity and pressure terms involv
straightforward applications of the higher order interpolation operators and can be writt

as

n/2
d(2k—1) Ui
(Cont.— NS = S 2&DT _ 40
Z k5(21<—1)Xi (40)

Sk
(2P (41)
S(2k—1)Xi

n/2
(Pres.— NSp; = er

k=1

As an example, the sixth order accurate finite difference schemes on a staggered r
uniform grid are given by

15064 u; 25 83U 3 &su;
Cont—NH) = —"— — ——+ — =0, 42
( ) 12851Xi 12853Xi + 12855Xi ( )
1506 2556 33
(Pres.— NS); = V0P 29 93P + — %P (43)

12881%  12883%  128685%

. 150 61 (150 4, 25 5 3 _
Div. - N)j = — — o 3xi 5x‘ 1x;
(Ow i = 12850, {<128”‘ 128"t 128" >”'

_ 25 & @Wlm _ §—3x. + > 3 s )
12883%; |\ 128" 128" 128" '

3 3 150_.1Xi 25 —3x. 3 —5x. -5X;
12885X] {(128u‘ 1287 Taggh )W (44)
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1£;
15017150 . 25 . 3 ..\ o
Adv.— NB), = —— — [ =gl — g% 4+ = gos | =L
(Adv.— N = 1783, (128”' 128" T 128" ) 5,
36§
25 17150 25 3 SaUi
_ = _Lleéi _ _lTj3Si + _T5Ei il
1287; \ 128 128 1280 ) 5,
5¢j
3 17150 25 3 P!
= = 7U—jl& _ 7u—138 775& sUi , (45)
128J; \ 128 128 1287 ) seg,
1 1
(Skew— NSB); = 2 (Div. — NSB); + 5 (Adv.— NS). (46)

5. PERIODIC INVISCID FLOW SIMULATIONS

To confirm the results of the previous sections numerically, three-dimensional invisc
channel flow simulations are performed. The flow field is assumed to be periodic in tl
streamwise; and spanwisgs directions. The fourth order accurate finite difference scheme
is used for the convective term. The zero-normal velocity boundary conditions are assun
along the walls. Solenoidal initial velocity fields are generated using homogeneous rand
numbers. A third order Runge—Kutta (RK3) method of Spataml. [7] is used for time
integration. The splitting method by Dukowicz and Dvinsky [8] is used to enforce thi
solenoidal condition. The resulting discrete Poisson’s equation for the pressure is sol
using a discrete Fourier transform in the periodic directions and a penta-diagonal dir
matrix solver in the wall normal direction. The computational box #sx22 x 27 and
16 x 16 x 16 mesh points are used. The grid spacings in the periodic directions are unifor
The wall normal grid is stretched using a hyperbolic-tangent function

tanh(y (2j /N2 — 1))
tanh(y)

X2(j)= s ] =0,...,No. (47)

Numerical tests are performed fpr= 3.

The analytical conservation requirements dictate that the total momenrtymand
total kinetic energy(K) = %(u% + u§ + u%), should be conserved in time. We normalize
the initial velocity field in such a way thgu|i—o) = (Uslt—o) =0 and(K |i—g) = 1. Due
to the fact that grid spacing is uniform in the streamwise and spanwise directions, t
convective schemes have much better conservation properties. Since commutation err
Eq. (36) is zero foi =1, 3, both advective and skew-symmetric forms of the convective
term conserve momentumxa andxs directions. However, the commutation error between
averaging and differencing operators in the wall normal direction is not zero. Consequen
the kinetic energy is still conserved only for the skew-symmetric form of the convectiv
term.

The conservation of momentum is confirmed numerically up to machine accuracy. St
prisingly, the momentum is conserved for all three forms of the convective term in all thre
directions even though the grid in wall normal direction is not uniform. We attribute this t
the specific properties of the inviscid flow between parallel plates.

As we have already mentioned, the total kinetic energy is also an ambiguous quan
since it cannot be defined uniquely on a staggered grid. In this paper we used the follow
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FIG. 2. Evolution of the kinetic energy conservation error (Biv. — N$4) (- - -), (Adv.— N$4) (——), and
(Skew— NS4 (——-) convective schemes.

norm for the total kinetic energy,

3
K = ZZZZuF(x)AV(x), (48)

i=1 X1 X2 Xs

where the sumsthatappearin Eq. (48) are takenin the respective direatibne,= Jp AV,

10)

At

0) = (Kle

(Kl

10

At

FIG.3. Kinetic energy conservation errortat= 10 as a function of time stefut for (Skew— N$4) convective
scheme.
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J, is the Jacobian of the transformation— &, andAV; = [5_; A is a constant volume

in the computational domain. The energy norm (48) is not conserved for both divergen
and advective forms of the convection term. However, an alternative energy norm m
be conserved. For that reason further investigation is needed to confirm or deny the e
tence of such a norm.

The time evolution of the total kinetic energy defined by Eq. (48) is shown in Fig. 2. |
can be easily seen that for both divergence and advective forms of the convective term
energy is not conserved. Also it should be noticed that the sign of the conservation energ
not defined since the conservation error is given by the nonlinear term, which can be eit|
positive or negative.

The conservation of the kinetic energy for the skew-symmetric formis confirmed in Fig.
Kinetic energy is not conserved exactly since the third order Runge—Kutta time steppi
method introduces a slight dissipative error. To demonstrate that the skew-symmetric sche
is conservative, the time step is decreased and the error is compared against the time
As expected, the time stepping error decreases with the cubé¢ (fee Fig. 3), and we
observe no violation of kinetic energy conservation due to the spatial scheme.

6. CONCLUSIONS

The class of high order staggered grid finite difference schemes proposed by Morini:
etal [3]is generalized to non-uniform meshes. The proposed schemes do not simultaneot
conserve mass, momentum, and kinetic energy. However, depending on the form of
convective term, conservation of either momentum or energy in addition to mass can
achieved. Furthermore, the non-conservation is weak; it is a function of the commutati
error, which is very small for smoothly varying meshes. Certainly, experience has sho
that schemes that are fully conservative on uniform meshes perform considerably be
on non-uniform meshes when compared to the schemes which are not fully conservative €
on uniform meshes. The results presented in this paper are not discouraging at all: the s
kind of analysis for the standard generalization to a non-uniform grid of the second ord
scheme of Harlow and Welch [1] would lead to similar conclusions. Thus, the generaliz
schemes developed in this paper will enable us to perform numerical simulations w
greater accuracy while preserving the conservation properties of the second order sch
of Harlow and Welch.
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