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Numerical simulation of turbulent flows (DNS or LES) requires numerical methods
that are both stable and free of numerical dissipation. One way to achieve this is to
enforce additional constraints, such as discrete conservation of mass, momentum,
and kinetic energy. The objective of this work is to generalize the high order schemes
of Morinishiet al. to non-uniform meshes while maintaining conservation properties
of the schemes as much as possible. This generalization is achieved by preserving
symmetries of the uniform mesh case. The proposed schemes do not simultaneously
conserve mass, momentum, and kinetic energy. However, depending on the form
of the convective term, conservation of either momentum or energy in addition to
mass can be achieved. It is shown that the conservation properties of the generalized
schemes are as good as those of the standard second order finite difference scheme on
non-uniform meshes, while the accuracy of the new schemes is definitely superior.
The predicted conservation properties are demonstrated numerically in inviscid flow
simulations. c© 2000 Academic Press

Key Words:DNS; LES; numerical method; non-uniform mesh; conservation prop-
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1. INTRODUCTION

Numerical simulation of turbulent flows (DNS or LES) requires numerical methods that
can accurately represent a wide range of spatial scales. One way to achieve a desired ac-
curacy is to use high order finite difference schemes. However, additional constraints such
as discrete conservation of mass, momentum, and kinetic energy should be enforced if
one wants to ensure that unsteady flow simulations are both stable and free of numerical
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dissipation. In addition, both pressure and velocity fields must be physical. These require-
ments are usually achieved by using a staggered grid and enforcing continuity.

Until recently the standard second order accurate staggered grid finite difference scheme
of Harlow and Welch [1] was the only scheme that simultaneously conserved mass, mo-
mentum, and kinetic energy. It was observed by Ghosal [2] that the accuracy of a second
order finite difference scheme is low and fine meshes are required to achieve acceptable
results. For that reason Morinishiet al. [3] derive the general family of fully conserva-
tive higher order accurate finite difference schemes for uniform staggered grids. Both the
scheme of Harlow and Welch [1] and that of Morinishiet al. [3] conserve mass, mo-
mentum, and kinetic energy on a uniform mesh. However, generalizing these schemes to
non-uniform meshes and preserving the conservation properties is not straightforward. For
example, the generalization of the fourth order accurate finite difference scheme, suggested
in [3], does not even conserve momentum. Furthermore, Morinishiet al. [3] mistakenly
concluded that in order to construct conservative schemes, one should choose between
accuracy and conservation. One of the reasons why the authors came to this conclusion
may be the fact that they tried to generalize the scheme by changing the weights in the
difference operators as a function of local grid spacings and preserving the order of lo-
cal truncation error. As a consequence of this generalization, the resulting scheme does
not preserve symmetries of the uniform mesh case. Verstappen and Veldman [4], in their
analysis of the linear convective-diffusion equation on non-uniform meshes, showed that
in order for the scheme to be conservative, it should preserve symmetries of the underly-
ing operator, i.e., the convective derivative should be approximated by a skew-symmetric
operator.

Another attempt to construct higher order conservative scheme was recently under-
taken by Verstappen and Veldman [4, 5]. The fourth-order accuracy was achieved by us-
ing Richardson extrapolation of symmetry preserving generalization of the second-order
scheme of Harlow and Welch [1]. It should be noted that the scheme of Verstappen and
Veldman, when applied to uniform meshes, is different from the fourth order fully conser-
vative schemes developed in [3] and, as shown in [3], does not conserve momentum. The
major strength of the scheme proposed in [4, 5] is that it is computationally efficient and
conserves both mass and energy on non-uniform meshes.

The objective of this work is to generalize the high order schemes of Morinishiet al.
[3] to non-uniform meshes by preserving the symmetries of the uniform mesh case and to
study the conservation properties of the proposed shemes.

The paper is organized as follows. Conservation properties of the mass, momentum,
and kinetic energy equations for incompressible flow are reviewed in Section 2. Discrete
operators, used in this paper, are defined in Section 3. The generalization of the high
order schemes of Morinishiet al. [3] to non-uniform meshes is presented in Section 4.
The conservation properties of the proposed schemes are discussed there as well. Finally,
numerical tests of the conservation properties are performed in Section 5.

2. ANALYTICAL REQUIREMENTS

In this section, we briefly outline the analytical requirements for conservation of mass,
momentum, and energy for incompressible flow. For further details we refer the reader
to [3].
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The continuity and momentum equations describing the motion of incompressible flow
are written symbolically as

(Cont.) = 0, (1a)

∂ui

∂t
+ (Conv.)i + (Pres.)i + (Visc.)i = 0, (1b)

where

(Cont.) ≡ ∂ui

∂xi
, (Pres.)i ≡ ∂p

∂xi
, (Visc.)i ≡ −∂τi j

∂xj
(2)

andui is the velocity vector,p is the pressure divided by density, andτi j is the viscous stress.
Henceforth,p will be referred to as pressure.(Conv.)i is a generic form of the convective
term and will be defined below.

Conservation properties of Eqs. (1a)–(1b) will now be established. Note that Eqs. (1a)–
(1b) are written in the form

∂φ

∂t
+ 1Q+ 2Q+ 3Q+ · · · = 0. (3)

Integrating Eq. (3) over the volume we obtain

∂

∂t

∫ ∫ ∫
V
φ dV +

∑
k

∫ ∫ ∫
V

k Q dV = 0.

We say that the termk Q conservesφ if the following relation holds in a periodic field:∫ ∫ ∫
V

k Q dV = 0. (4)

Following this definition of conservation, it is easy to show that Eq. (4) is satisfied auto-
matically if k Q is written in divergence (conservative) form

k Q = ∂
(k

Fj
)

∂xj
. (5)

Note that mass is conserveda priori since the continuity appears in divergence form. For
the same reason the pressure(Pres.)i and viscous(Visc.)i terms conserve momentum. The
convective term is also conservativea priori if it is written in divergence form, which is
not always the case. There are four commonly used forms of the convective term. These
forms are referred to asdivergence, advective, skew-symmetric, androtational forms and
are defined as

(Div.)i ≡ ∂u j ui

∂xj
, (6a)

(Adv.)i ≡ u j
∂ui

∂xj
, (6b)

(Skew.)i ≡ 1

2

∂u j ui

∂xj
+ 1

2
u j
∂ui

∂xj
, (6c)

(Rot.)i ≡ u j

(
∂ui

∂xj
− ∂u j

∂xi

)
+ 1

2

∂u j u j

∂xi
. (6d)
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The four forms are connected with each other through the following analytical relations,

(Adv.)i = (Div.)i − ui · (Cont.), (7a)

(Skew.)i = 1

2
(Div.)i + 1

2
(Adv.)i , (7b)

(Rot.)i = (Adv.)i , (7c)

where(Cont.)≡ ∂ui /∂xi . Note that the advective, skew-symmetric, and rotational forms
are conservative as long as the continuity equation is satisfied.

The transport equation of the square of a velocity component, for instance,u2
1/2, can be

written as

∂u2
1/2

∂t
+ u1 · (Conv.)1+ u1 · (Pres.)1+ u1 · (Visc.)1 = 0, (8)

where(Conv.)i is a generic form of the convective term, and(Pres.)i and(Visc.)i are the
pressure and viscous terms, respectively. The convective term in Eq. (8) can be written for
each of the forms as

u1 · (Div.)1 = ∂u j u2
1/2

∂xj
+ 1

2
u2

1 · (Cont.), (9a)

u1 · (Adv.)1 = ∂u j u2
1/2

∂xj
− 1

2
u2

1 · (Cont.), (9b)

u1 · (Skew.)1 = ∂u j u2
1/2

∂xj
. (9c)

Note that the skew-symmetric form is conservativea priori in the velocity square equation.
Since the rotational form is equivalent to the advective form, the four convective forms are
energy conservative if the continuity equation is satisfied.

The transport equation of the kinetic energy,K ≡ ui ui /2, can be written as

∂K

∂t
+ ui · (Conv.)i + ui · (Pres.)i + ui · (Visc.)i = 0. (10)

The conservation property of the convective term can be determined in the same manner as
for u2

i /2. The terms involving pressure and viscous stress in Eq. (10) can be written as

ui · (Pres.)i = ∂pui

∂xi
− p · (Cont.), (11a)

ui · (Visc.)i = ∂τi j ui

∂xj
− τi j

∂ui

∂xj
. (11b)

The pressure term conserves kinetic energy if the continuity equation is satisfied. The viscous
term is not conservative because the second term on the right-hand side of Eq. (11b) is the
kinetic energy dissipation. Table I provides a summary of the conservation properties of the
convective, pressure, and viscous terms in the transport equations forui , u2

1/2, andK for
incompressible flow.

Morinishi et al. [3] derived a class of high order schemes for a uniform staggered grid
which satisfy the conservation properties in a discrete sense. The objective of this work is
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TABLE I

Conservation Properties of the Convective, Pressure, and Viscous Terms

in the Momentum and Transport Equations

Transport equations

Terms in momentum eq. ui u2
1/2 K

(Div.) ¯ © ©
(Adv.) = (Rot.) © © ©
(Skew.) © ¯ ¯
(Pres.) ¯ × ©
(Visc.) ¯ × ×

Notation.̄ , conservativea priori;©, conservative if(Cont.)= 0;×, not conservative.

to generalize the higher order schemes of Morinishiet al. [3] to non-uniform meshes while
preserving discrete conservation as much as possible.

3. DISCRETE OPERATORS

In order to simplify the analysis, we limit our consideration to the rectangular algebraic
non-uniform meshes with non-uniform grid spacing in each of the directionsx1, x2, andx3.
By algebraic grid we imply that the computational grid in physical domain is obtained by
mapping a uniform computational grid in the computational domain to physical domain. Let
D= [a1, b1]× [a2, b2]× [a3, b3] andÄ= [α1, β1]× [α2, β2]× [α3, β3] be respectively the
physical and computational domains,x= (x1, x2, x3)

T andξ= (ξ1, ξ2, ξ3)
T be coordinates

in physical and computational domains,ξ= f(x) be a nonlinear map of physical domain
D into computational domain, and11, 12, 13 be uniform grid spacings in the respective
directions in computational domainÄ. In this paper we limit our consideration to the case
where the mappingξ= f(x) can be written in the form

ξi = fi (xi ), i = 1, . . . ,3. (12)

In other words, we consider only uni-directional mappings, and the computational grid in
physical space can be constructed as a tensor product of one-dimensional computational
grids.

Let us briefly describe the staggered grid arrangement. An example of a uniform stag-
gered grid is shown in Fig. 1. In the case of uniform grid spacings, the choice for location
of velocity and pressure points is natural: the velocity componentsui (i = 1, 2, 3) are dis-
tributed around the pressure points. The continuity equation is centered at the pressure points
while the momentum equations corresponding to each velocity component are centered at
the respective velocity points. In the case of a non-uniform staggered grid, the locations of
pressure and velocity points are ambiguous: these points can be determined as geometrical
volume and edge centers either in physical or computational spaces. Morinishiet al. [3]
followed the first approach. However, the generalization to non-uniform meshes suggested
in [3] preserves the conservation properties only in the case of the second order scheme.
The reason is that for the higher order schemes (4th order and higher) the resulting discrete
operators do not preserve symmetries of the uniform mesh case. Verstappen and Veldman
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FIG. 1. Staggered grid arrangement.

[4] and Veldman and Rinzema [6] showed that in order for the scheme to be conservative,
it should preserve symmetries of the underlying operator. The basic idea behind Veldman
and Verstappen’s generalization is that the differentiation operation is performed in com-
putational space. The derivative in physical space is calculated using the local Jacobian,
which can be found numerically using the same stencil and the same order accuracy as finite
differencing operator in the computational space. To illustrate this idea let us consider the
one-dimensional case. First, we approximate the derivative in computational space

δφ

δξ
= φi+1− φi−1

21
,

where1 is the uniform grid spacing. The derivative in physical space is found as

δφ

δx
= 1

J

δφ

δξ
, (13)

whereJ is the Jacobian of the transformationx→ ξ , which can be found numerically by
substitutingx for φ

J = δx

δξ
= xi+1− xi−1

21
.

This seemingly simple idea is the key which enables us to generalize the high order schemes
of Morinishi et al. [3] to non-uniform meshes.

Let the finite difference operator in computational domain with stenciln acting onφ with
respect toξ1 be defined as

δnφ

δnξ1
≡ φ(ξ1+ n11/2, ξ2, ξ3)− φ(ξ1− n11/2, ξ2, ξ3)

n11
. (14)

The interpolation operator with stenciln acting onφ in theξ1 direction is given by

φ̄
nξ1 ≡ φ(ξ1+ n11/2, ξ2, ξ3)+ φ(ξ1− n11/2, ξ2, ξ3)

2
. (15)
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In addition, we define a special interpolation operator with stenciln of the product ofφ and
ψ in theξ1 direction,

φ̂ψ
nξ1 ≡ 1

2
φ(ξ1+ n11/2, ξ2, ξ3)ψ(ξ1− n11/2, ξ2, ξ3)

+ 1

2
ψ(ξ1+ n11/2, ξ2, ξ3)φ(ξ1− n11/2, ξ2, ξ3). (16)

Discrete operators in theξ2 andξ3 directions are defined in the same way as for theξ1

direction.
The following identities will be needed to derive some relations later in the paper:

δnφψ
nξ j

δnξ j
= φ δ2nψ

δ2nξ j
+ ψ δ2nφ

δ2nξ j
, (17a)

(φψ) · ψnξ ĵ = φ̄nξ j ψ̂ψ
nξ j
, (17b)

φ̄
nξ j ψ̄nξ j = 1

2
φψ

nξ j + 1

2
φ̂ψ

nξ j
, (17c)

δnφ̄
nξ j

δnξ j
= δ2nφ

δ2nξ j
, (17d)

δnφ̄
mξi

δnξ j
= δnφ

mξi

δnξ j
, (17e)

ψ
δnφ

δnξ j

nξ j

= δnψ · φ̄nξ j

δnξ j
− φ δnψ

δnξ j
, (17f)

φ
δnψ · φ̄nξ j

δnξ j
= 1

2

δnψ · φ̂φnξ j

δnξ j
+ 1

2
φφ
δnψ

δnξ j
. (17g)

Note thatξi appearing as a superscript does not follow the summation convention.
For notational convenience let us introduce the discrete finite difference operator in the

physical domain,

δnφ

δnxi
≡ 1

Ji

δnφ

δnξi
, (18a)

where Ji is the local Jacobian of the transformationxi → ξi . Note that the subscripti
appearing inJi in Eq. (18a) and all subsequent equations does not follow the summation
convention. We emphasize that it is the form of Eq. (18a) which allows the construction of
higher order schemes on non-uniform meshes with good conservation properties.

The averaging operators (15) and (16) use only functional values at grid points and do
not use any information about grid spacing. Consequently, these operations are the same in
physical and computational spaces:

φ̄
nxi ≡ φ̄nξ1, (18b)

φ̂ψ
nxi ≡ φ̂ψnξi

. (18c)

We now define two concepts of discrete conservation. We say that discretized equation
(3) locally conservesφ if all the discretized termsk Q can be written in the conservative
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form,

k Q =
∑

n

δn
(

k Fn
j

)
δnxj

. (19)

This definition corresponds to the analytical divergence form of Eq. (5).
We say that discretized equation (3) isglobally conservative if the following relation

holds in a periodic field, ∑
x1

∑
x2

∑
x3

k Q(φ)1V(x) = 0, (20)

where1V(x)≡ J1V(ξ), J= ∏3
k=1 Jk is the Jacobian of the transformationx→ ξ, and

1V(ξ)= ∏3
k=11k is a constant volume in the computational domain. Note that in the pe-

riodic case local conservation (19) implies global conservation. Also note that the definition
(20) is a discrete analogue of Eq. (4).

4. FINITE DIFFERENCE SCHEMES

4.1. Continuity and pressure terms.We define the discrete continuity and pressure
terms as

(Cont.− NS2) ≡ δ1ui

δ1xi
= 0, (21)

(Pres.− NS2)i ≡ δ1 p

δ1xi
, (22)

where theNS2 denotes the second order accurate finite difference scheme on a non-uniform
staggered grid. Analogously, fourth order approximations are

(Cont.− NS4) ≡ 9

8

δ1ui

δ1xi
− 1

8

δ3ui

δ3xi
= 0, (23)

(Pres.− NS4)i ≡ 9

8

δ1 p

δ1xi
− 1

8

δ3 p

δ3xi
. (24)

Note that discrete continuity equation(Cont.−NSn) is centered at the cell center (pressure)
point, while pressure(Pres.−NSn)i and convective(Conv.−NSn)i terms are evaluated at
the respective velocity points.

Local kinetic energy is an ambiguous quantity in a staggered grid arrangement since
the individual velocity components are defined at different locations in space. Some sort
of interpolation must be used in order to obtain the kinetic energy at the same point. One
possible interpolation for the pressure terms in the energy equation is

1

Ji
ui
δ1 p

δ1ξi

1ξi

= δ1ui p̄1xi

δ1xi
− p · (Cont.− NS2), (25)

9

8

1

Ji
ui
δ1 p

δ1ξi

1ξi

− 1

8

1

Ji
ui
δ3 p

δ3ξi

3ξi

= 9

8

δ1ui p̄1xi

δ1xi
− 1

8

δ3ui p̄3xi

δ3xi
− p · (Cont.− NS4). (26)
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TABLE II

Conservation Properties of Finite Difference Schemes for

the Pressure Term on a Non-uniform Staggered Grid

Transport equations

FD schemes for momentum eq. ui K

(Pres.− NS2) ¯ ©2

(Pres.− NS4) ¯ ©4

Notation.̄ , conservativea priori;©2, conservative if(Cont.−NS2)= 0;
©4, conservative if(Cont.− NS4)= 0.

Therefore, pressure terms (22) and (24) conserve energy if the corresponding discrete
continuity equations are satisfied. Conservation properties of the discrete pressure term on
a non-uniform staggered grid are summarized in Table II.

4.2. Second order accurate convective schemes.As we have already mentioned, local
kinetic energyK ≡ ui ui /2 cannot be defined uniquely on a staggered grid. A term is (locally)
conservative in the transport equation ofK if the term is (locally) conservative in the
transport equations ofu2

1/2, u2
2/2, andu2

3/2. Since the conservation properties ofu2
2/2 and

u2
3/2 are estimated in the same manner as foru2

1/2, only the conservation properties of the
convective schemes in the momentum andu2

1/2 equations need to be considered.
The rotational form for a fourth and higher order convective scheme which conserves

both momentum and kinetic energy on uniform mesh is not known. Therefore we limit our
consideration to divergence, advective, and skew-symmetric forms. Let us define second
order accurate convective schemes for non-uniform staggered grids as

(Div.− NS2)i ≡ δ1u j
1xi ui

1xj

δ1xj
, (27)

(Adv.− NS2)i ≡ 1

Jj
u j

1ξi
δ1ui

δ1ξ j

1ξ j

, (28)

(Skew.− NS2)i ≡ 1

2
(Div.− NS2)i + 1

2
(Adv.− NS2)i . (29)

Using the identities (17e), (17f), (18a), and (18b) we find that the advective(Adv.− NS2)i
and divergence(Div.− NS2)i forms of the convective term are connected via

(Adv.− NS2)i = (Div.− NS2)i − ui
δ1u j

1xi

δ1xj
. (30)

Using (17e), Eq. (30) can be further simplified as

(Adv.−NS2)i = (Div.−NS2)i − ui · (Cont.− NS2)
1xi + ui ·

[
δ1ui

δ1xi

1xi

− δ1ui
1xi

δ1xi

]
, (31)

where there is no summation overi . Note that the term in square brackets is the commutation
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error between the finite difference (18a) and averaging (18b) operators and in general is not
zero, unless the grid is uniform in thexi direction.

Equations (27) and (31) are the discrete analogs of Eqs. (6a) and (7a), respectively. Clearly,
Eqs. (6a) and (27) have the same structure while Eq. (31) has an additional term in it when
compared to Eq. (7a). For that reason the discrete conservation properties for both advective
and skew-symmetric forms of the convective term are different from analytical ones. In other
words, the divergence(Div.− NS2)i form of the convective term is conservativea priori
in the momentum equation while enforcing the discrete continuity equation is not enough
to make advective(Adv.− NS2)i and skew-symmetric(Skew.− NS2)i forms conserve the
momentum. This is due to the presence of a commutation error term which, in general, is
non-zero for non-uniform meshes.

Using the identities (17f), (17g), and (18a)–(18c) we find that the product betweenu1

and(Skew.− NS2)1 can be rewritten as

u1 · (Skew.− NS2)1 = 1

2

δ1u j
1x1û1u1

1xj

δ1xj
. (32)

Therefore,(Skew.−NS2)1 is conservativea priori in the transport equation ofu2
1/2. Note

that in the case of the non-uniform staggered grid, the commutation error term is non-zero
and neither divergence(Div.−NS2)i nor advective(Adv.−NS2)i forms of the convective
term conserve kinetic energy. We also note that in the case of a uniform mesh, the com-
mutation error is zero, and we fully recover the conservation properties described in [3].
Conservation properties of the second order accurate convective schemes on a non-uniform
staggered grid are summarized in Table III. Note that the same kind of analysis for the
standard generalization to a non-uniform grid of the second order scheme of Harlow and
Welch [1] would lead to similar conclusions.

4.3. Higher order accurate convective schemes.In this section we will generalize the
higher order accurate convective schemes of Morinishiet al. [3] for non-uniform meshes.
The fourth order accurate convective schemes on a non-uniform staggered grid are defined as

(Div.− NS4)i ≡ 9

8

δ1

δ1xj

{(
9

8
u j

1xi − 1

8
u j

3xi

)
ui

1xj

}
− 1

8

δ3

δ3xj

{(
9

8
u j

1xi − 1

8
u j

3xi

)
ui

3xj

}
, (33)

TABLE III

Conservation Properties of Second Order Accurate Convective

Schemes on a Non-uniform Staggered Grid

Transport equations

FD schemes for momentum eq. ui u2
1/2 K

(Div.− NS2) ¯ ⊗2 ⊗2

(Adv.− NS2) ⊗2 ⊗2 ⊗2

(Skew.− NS2) ⊗2 ¯ ¯

Notation.¯, conservativea priori; ⊗2, not conservative on a non-uniform
grid and conservative on a uniform grid if(Cont.− NS2)= 0.
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(Adv.− NS4)i ≡ 9

8

1

Jj

(
9

8
u j

1ξi − 1

8
u j

3ξi

)
δ1ui

δ1ξ j

1ξ j

− 1

8

1

Jj

(
9

8
u j

1ξi − 1

8
u j

3ξi

)
δ3ui

δ3ξ j

3ξ j

, (34)

(Skew.− NS4)i ≡ 1

2
(Div.− NS4)i + 1

2
(Adv.− NS4)i . (35)

Using the identities (17e), (17f), (18a), and (18b) we find that the advective(Adv.−NS4)i
and divergence(Div.− NS4)i forms of the convective term are connected via

(Adv.− NS4)i = (Div.− NS4)i − ui ·
(

9

8
(Cont.− NS4)

1xi − 1

8
(Cont.− NS4)

3xi

)

+ 9

8
ui ·
(

9

8

[
δ1ui

δ1xi

1xi

− δ1ui
1xi

δ1xi

]
− 1

8

[
δ3ui

δ3xi

1xi

− δ3ui
1xi

δ3xi

])

− 1

8
ui ·
(

9

8

[
δ1ui

δ1xi

3xi

− δ1ui
3xi

δ1xi

]
− 1

8

[
δ3ui

δ3xi

3xi

− δ3ui
3xi

δ3xi

])
, (36)

where there is no summation overi . Note that in the case of non-periodic boundary condi-
tions the special care should be taken near the wall. This can be achieved either by decreasing
the order of the scheme near the wall or by introducingghost pointsas it is done in Morinishi
et al. [3].

Fourth order convective schemes exhibit the same pattern as second order schemes:
only the divergence form(Div.− NS4)i of the convective term is conservativea priori in
the momentum equation. The presence of a commutation error in both advective(Adv.−
NS4)i and skew-symmetric(Skew.−NS4)i forms of the convective term results in non-
conservation of momentum on a non-uniform mesh.

The conservation properties foru2
1/2 can be derived exactly the same way as in

the previous section. Using the identities (17f), (17g), and (18a)–(18c) we obtain the
relation

u1 · (Skew.− NS4)1 = 9

8

δ1

δ1xj

{(
9

8
u j

1x1 − 1

8
u j

3x1

)
û1u1

2

1xj
}

− 1

8

δ3

δ3xj

{(
9

8
u j

1x1 − 1

8
u j

3x1

)
û1u1

2

3xj
}
. (37)

Thus,(Skew.− NS4)i is conservativea priori in the transport equation ofu2
1/2 while both

the divergence(Div.−NS4)i and advective(Adv.−NS4)i forms of the convective term do
not conserve kinetic energy when the staggered grid is non-uniform. In Table IV we sum-
marize the conservation properties of the fourth order accurate convective schemes on a
non-uniform staggered grid. They are identical to the properties of the second order scheme
of Harlow and Welch [1].

Higher order finite difference schemes on non-uniform meshes can be constructed in the
same way as for the fourth order schemes. Thenth order accurate convective schemes on a
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TABLE IV

Conservation Properties of Fourth Order Accurate Convective

Schemes on a Non-uniform Staggered Grid

Transport equations

FD schemes for momentum eq. ui u2
1/2 K

(Div.− NS4) ¯ ⊗4 ⊗4

(Adv.− NS4) ⊗4 ⊗4 ⊗4

(Skew.− NS4) ⊗4 ¯ ¯

Notation.¯, conservativea priori;⊗4, not conservative on a non-uniform
grid and conservative on a uniform grid if(Cont.−NS4)= 0.

non-uniform staggered grid are defined as

(Div.− NSn)i ≡
n/2∑
k=1

αk
δ(2k−1)

δ(2k−1)xj

{(
n/2∑
l=1

αl u j
(2l−1)xi

)
ui
(2k−1)xj

}
, (38)

(Adv.− NSn)i ≡
n/2∑
k=1

αk

Jj

(
n/2∑
l=1

αl u j
(2l−1)ξi

)
δ(2k−1)ui

δ(2k−1)ξ j

(2k−1)ξ j

, (39)

where theαk are the interpolation weights. The continuity and pressure terms involve
straightforward applications of the higher order interpolation operators and can be written
as

(Cont.− NSn) ≡
n/2∑
k=1

αk
δ(2k−1)ui

δ(2k−1)xi
= 0, (40)

(Pres.− NSn)i ≡
n/2∑
k=1

αk
δ(2k−1)p

δ(2k−1)xi
. (41)

As an example, the sixth order accurate finite difference schemes on a staggered non-
uniform grid are given by

(Cont.− NS6) ≡ 150

128

δ1ui

δ1xi
− 25

128

δ3ui

δ3xi
+ 3

128

δ5ui

δ5xi
= 0, (42)

(Pres.− NS6)i ≡ 150

128

δ1 p

δ1xi
− 25

128

δ3 p

δ3xi
+ 3

128

δ5 p

δ5xi
, (43)

(Div.− NS6)i ≡ 150

128

δ1

δ1xj

{(
150

128
u j

1xi − 25

128
u j

3xi + 3

128
u j

5xi

)
ui

1xj

}
− 25

128

δ3

δ3xj

{(
150

128
u j

1xi − 25

128
u j

3xi + 3

128
u j

5xi

)
ui

3xj

}
+ 3

128

δ5

δ5xj

{(
150

128
u j

1xi − 25

128
u j

3xi + 3

128
u j

5xi

)
ui

5xj

}
, (44)
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(Adv.− NS6)i ≡ 150

128

1

Jj

(
150

128
u j

1ξi − 25

128
u j

3ξi + 3

128
u j

5ξi

)
δ1ui

δ1ξ j

1ξ j

− 25

128

1

Jj

(
150

128
u j

1ξi − 25

128
u j

3ξi + 3

128
u j

5ξi

)
δ3ui

δ3ξ j

3ξ j

+ 3

128

1

Jj

(
150

128
u j

1ξi − 25

128
u j

3ξi + 3

128
u j

5ξi

)
δ5ui

δ5ξ j

5ξ j

, (45)

(Skew.− NS6)i ≡ 1

2
(Div.− NS6)i + 1

2
(Adv.− NS6)i . (46)

5. PERIODIC INVISCID FLOW SIMULATIONS

To confirm the results of the previous sections numerically, three-dimensional inviscid
channel flow simulations are performed. The flow field is assumed to be periodic in the
streamwisex1 and spanwisex3 directions. The fourth order accurate finite difference scheme
is used for the convective term. The zero-normal velocity boundary conditions are assumed
along the walls. Solenoidal initial velocity fields are generated using homogeneous random
numbers. A third order Runge–Kutta (RK3) method of Spalartet al. [7] is used for time
integration. The splitting method by Dukowicz and Dvinsky [8] is used to enforce the
solenoidal condition. The resulting discrete Poisson’s equation for the pressure is solved
using a discrete Fourier transform in the periodic directions and a penta-diagonal direct
matrix solver in the wall normal direction. The computational box is 2π × 2× 2π and
16× 16× 16 mesh points are used. The grid spacings in the periodic directions are uniform.
The wall normal grid is stretched using a hyperbolic-tangent function

x2( j ) = tanh(γ (2 j/N2− 1))

tanh(γ )
, j = 0, . . . , N2. (47)

Numerical tests are performed forγ = 3.
The analytical conservation requirements dictate that the total momentum,〈ui 〉, and

total kinetic energy,〈K 〉≡ 1
2〈u2

1 + u2
2 + u2

3〉, should be conserved in time. We normalize
the initial velocity field in such a way that〈u1|t=0〉= 〈u3|t=0〉=0 and〈K |t=0〉=1. Due
to the fact that grid spacing is uniform in the streamwise and spanwise directions, the
convective schemes have much better conservation properties. Since commutation error in
Eq. (36) is zero fori = 1, 3, both advective and skew-symmetric forms of the convective
term conserve momentum inx1 andx3 directions. However, the commutation error between
averaging and differencing operators in the wall normal direction is not zero. Consequently,
the kinetic energy is still conserved only for the skew-symmetric form of the convective
term.

The conservation of momentum is confirmed numerically up to machine accuracy. Sur-
prisingly, the momentum is conserved for all three forms of the convective term in all three
directions even though the grid in wall normal direction is not uniform. We attribute this to
the specific properties of the inviscid flow between parallel plates.

As we have already mentioned, the total kinetic energy is also an ambiguous quantity
since it cannot be defined uniquely on a staggered grid. In this paper we used the following
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FIG. 2. Evolution of the kinetic energy conservation error for(Div.−NS4) (- - -), (Adv.−NS4) (—·—), and
(Skew.− NS4) (– – –) convective schemes.

norm for the total kinetic energy,

K =
3∑

i=1

∑
x1

∑
x2

∑
x3

u2
i (x)1V(x), (48)

where the sums that appear in Eq. (48) are taken in the respective directions,1V(x)≡ J21Vξ ,

FIG. 3. Kinetic energy conservation error att = 10 as a function of time step1t for (Skew.−NS4) convective
scheme.
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J2 is the Jacobian of the transformationx2→ ξ2, and1Vξ =
∏3

k=11k is a constant volume
in the computational domain. The energy norm (48) is not conserved for both divergence
and advective forms of the convection term. However, an alternative energy norm may
be conserved. For that reason further investigation is needed to confirm or deny the exis-
tence of such a norm.

The time evolution of the total kinetic energy defined by Eq. (48) is shown in Fig. 2. It
can be easily seen that for both divergence and advective forms of the convective term the
energy is not conserved. Also it should be noticed that the sign of the conservation energy is
not defined since the conservation error is given by the nonlinear term, which can be either
positive or negative.

The conservation of the kinetic energy for the skew-symmetric form is confirmed in Fig. 3.
Kinetic energy is not conserved exactly since the third order Runge–Kutta time stepping
method introduces a slight dissipative error. To demonstrate that the skew-symmetric scheme
is conservative, the time step is decreased and the error is compared against the time step.
As expected, the time stepping error decreases with the cube of1t (see Fig. 3), and we
observe no violation of kinetic energy conservation due to the spatial scheme.

6. CONCLUSIONS

The class of high order staggered grid finite difference schemes proposed by Morinishi
et al. [3] is generalized to non-uniform meshes. The proposed schemes do not simultaneously
conserve mass, momentum, and kinetic energy. However, depending on the form of the
convective term, conservation of either momentum or energy in addition to mass can be
achieved. Furthermore, the non-conservation is weak; it is a function of the commutation
error, which is very small for smoothly varying meshes. Certainly, experience has shown
that schemes that are fully conservative on uniform meshes perform considerably better
on non-uniform meshes when compared to the schemes which are not fully conservative even
on uniform meshes. The results presented in this paper are not discouraging at all: the same
kind of analysis for the standard generalization to a non-uniform grid of the second order
scheme of Harlow and Welch [1] would lead to similar conclusions. Thus, the generalized
schemes developed in this paper will enable us to perform numerical simulations with
greater accuracy while preserving the conservation properties of the second order scheme
of Harlow and Welch.
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